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Letters
Sequential aldol condensation catalyzed by DERA mutant
Ser238Asp and a formal total synthesis of atorvastatin
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Abstract—A mutant DD-2-deoxyribose-5-phosphate aldolase (DERA), Ser238Asp, was used to prepare b-hydroxy-d-lactol synthons
and a key intermediate for atorvastatin synthesis.
� 2004 Elsevier Ltd. All rights reserved.
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Scheme 2. Sequential aldol reactions catalyzed by DERA.
2-Deoxyribose-5-phosphate aldolase (DERA, EC
4.1.2.4), a Schiff base forming type I class aldolase,
catalyzes the reversible aldol condensation between
acetaldehyde and DD-glyceraldehyde-3-phosphate (G3P)
to form DD-2-deoxyribose-5-phosphate (Scheme 1).1

DERA has been over-expressed in Escherichia coli and
its structure and catalytic mechanism have been deter-
mined at the atomic level.2 In addition to its natural
substrates, DERA accepts a broad range of unnatural
substrates, especially different acceptor aldehydes and
thus potentially has enormous application in organic
synthesis. Recently, a chemo-enzymatic total synthesis
of epothilones A and C with DERA catalysis has been
reported.3 The C-2 stereochemistry in acceptor alde-
hydes was found to play a key role in the DERA
catalysis.3;4

One type of interesting reaction catalyzed by DERA is
the sequential synthesis of b-hydroxy-d-lactol synthons
(Scheme 2).5 Under optimal conditions, three achiral
aldehydes are catalyzed by DERA to afford enantio-
merically pure (3R,5R) dihydroxyl aldehydes. The for-
mation of lactol is expected to shift the reaction to the
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Scheme 1. Aldol condensation catalyzed by DERA.
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condensation. Several b-hydroxy-d-lactols were pre-
pared by catalysis of the wild-type DERA.5 However,
the choice of R groups is very limited and only very
small or negatively charged groups are accepted. In
order to improve the enzyme�s tolerance of the R group,
the Ser238 residue was mutated to Asp. Such a mutation
should still retain the hydrophilic nature of the binding
pocket,4;6 but neutral and positively charged groups
should become preferred over negatively charged
groups. Indeed, the Ser238Asp mutant shows a 2.5-fold
improvement in Kcat=KM compared to that of the wild-
type enzyme. Molecular modeling indicates that the C-3
hydroxyl hydrogen forms a hydrogen bond with carb-
oxylate of Asp238, accounting for this increase in reac-
tivity.6

Compared with the wild-type DERA, the mutant
Ser238Asp showed a great improvement in catalytic
activity toward sequential aldol reactions (Table 1):
Incubation of 3-azidopropinaldehyde 1a and acetalde-
hyde with wild-type DERA did not afford any product
2a, while the mutant Ser238Asp gave 35% yield of the
sequential aldol condensation product. The mutant also
improves the yield of the condensation between 3-chlo-
ropropinaldehyde 1b and acetaldehyde from 25% for the
wild-type enzyme to 43% for the mutant. Interestingly,
3-nitropropinaldehyde was not catalyzed by either the
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Scheme 5. Reagents and conditions: (a) LiOH, MeOH–H2O, 83%;

(b) Boc2O, DMAP, 86%; (c) Ph3P, 3d, 72%.

O O

OH

N3

H2N OMe

OOO

N3 OR

OOHOH

N3 OMe

OOO

a

b

c

2a

78

6a R=Me
6b R=t-Bu

Scheme 4. Reagents and conditions: (a) MeONa, MeOH, 83%;

t-BuOK, t-BuOH, 72%; (b) camphorsulfonic acid, 2,2-dimethoxypro-

pane, 76%; (c) Ph3P, 3d, 88%.

Table 1. Sequential aldol reactions catalyzed by mutant Ser238Asp
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wild-type or the mutant enzymes, presumably because of
the negative charge on the oxygen atom of the nitro
group, which is less favored by the mutant than the wild-
type enzyme.

The sequential aldol reaction product 2a could easily be
transformed to molecules such as 5, a key chiral com-
ponent of atorvastatin 3 (Lipitor�, Sortis�), which is an
inhibitor of HMG-CoA reductase. Previous syntheses of
atorvastatin involve a Paal–Knorr pyrrole formation
reaction, which couples aromatic diketone 4 with chiral
ester 5 (Scheme 3). Several different approaches to the
key intermediate 5 or its analogues have been reported.7

In our research, the lactone ring of 2a was first opened
under basic conditions to afford methyl or tert-butyl
esters 6a and 6b (Scheme 4). Methyl ester 6a was then
protected with 2,2-dimethoxypropane to afford the
acetonide 7. Ph3P was employed to reduce the azido
group to the primary amine in high yield. However, we
found that tert-butyl ester 6b also became methyl ester 7
when 6b was treated with 2,2-dimethylpropane under
acid conditions. The tert-butyl ester amine 5 could be
prepared from methyl ester 7 in a three-step procedure
(Scheme 5).10 The methyl ester was first hydrolyzed
under basic conditions.8 Esterification of 9 with Boc2O
afforded tert-butyl ester 10,9 and 5 was synthesized after
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Scheme 3.
reduction of 10 with Ph3P. Following previously
described methodology,7d atorvastatin can be synthe-
sized from 5.

In conclusion, we examined the mutant DERA
Ser238Asp�s activity toward different substrates and
found that the substrate specificity of the mutant
enzyme had opened up to tolerate more unnatural
substrates. A new way to prepare tert-butyl[(4R,6R)-
6-aminoethyl-2,2-dimethyl-1,3-dioxn-4-yl]acetate, a key
chiral intermediate in the synthesis of atorvastatin, was
developed from the product of enzymatic catalysis 2a.
Compared to the previous syntheses, the new chemo-
enzymatic route described here is much shorter and
more efficient.
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